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Modern imaging methods like computed tomography
(CT) generate 3-D volumes of image data. How do
radiologists search through such images? Are certain
strategies more efficient? Although there is a large
literature devoted to understanding search in 2-D,
relatively little is known about search in volumetric
space. In recent years, with the ever-increasing
popularity of volumetric medical imaging, this question
has taken on increased importance as we try to
understand, and ultimately reduce, errors in diagnostic
radiology. In the current study, we asked 24 radiologists
to search chest CTs for lung nodules that could indicate
lung cancer. To search, radiologists scrolled up and
down through a ‘‘stack’’ of 2-D chest CT ‘‘slices.’’ At
each moment, we tracked eye movements in the 2-D
image plane and coregistered eye position with the
current slice. We used these data to create a 3-D
representation of the eye movements through the
image volume. Radiologists tended to follow one of
two dominant search strategies: ‘‘drilling’’ and
‘‘scanning.’’ Drillers restrict eye movements to a small
region of the lung while quickly scrolling through depth.
Scanners move more slowly through depth and search
an entire level of the lung before moving on to the
next level in depth. Driller performance was superior to
the scanners on a variety of metrics, including lung
nodule detection rate, percentage of the lung covered,

and the percentage of search errors where a nodule
was never fixated.

Introduction

Rapid technology improvements have led to massive
increases in the size and complexity of medical images
(Andriole et al., 2011). What would have been a single
chest radiograph has become a chest CT (computed
tomography) scan with, perhaps, 1,000 ‘‘slices’’ through
the body. These high-resolution images allow an
observer to detect abnormalities that might not have
been seen using older technology. For instance, in a
recent national lung cancer screening trial comparing
cancer-screening performance using either low-dose
chest CT scans or chest radiographs, chest CT led to
significantly reduced mortality (Aberle et al., 2011). By
all accounts, this finding as well as the increased access
to chest CT technology means that the number of chest
CT scans read by radiologists is bound to increase
dramatically in the coming years.

Still, while chest CT is undoubtedly a better lung
imaging modality, we know very little about how
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search is accomplished in this type of volumetric image.
Understanding the patterns of search may inform best
practices in training future radiologists. It may also
allow researchers to design more effective computer
aided detection (CAD) algorithms. The most common
method of viewing volumetric images such as CT scans
is a ‘‘stack viewing’’ mode in which observers navigate
through stacks of 2-D images, typically oriented as if
the observer is looking up from below (the axial
projection). Scrolling through depth while viewing 2-D
orthogonal slices is a common form of search in
radiology, including virtually all CT and magnetic
resonance (MR) images. Thus, understanding how
search is accomplished in chest CT scans will be
important for both specific information about this task
and more general information regarding search strat-
egies through volumetric images.

Although there is an existing literature devoted to
understanding search strategies in 2-D medical images
such as chest radiographs (Berbaum et al., 1998; Ellis
et al., 2006; Kundel, Nodine, & Carmody, 1977, 1978;
Kundel, Nodine, & Krupinski, 1989; Kundel, Nodine,
Thickman, & Toto, 1987; Kundel, Nodine, & Toto,
1991; Manning, Barker-Mill, Donovan, & Crawford,
2006) and mammograms (Krupinski, 1996; Krupinski
& Nishikawa, 1997; Kundel, Nodine, Conant, &
Weinstein, 2007; Mello-Thoms, Dunn, Nodine, &
Kundel, 2001; Mello-Thoms, Dunn, Nodine, Kundel,
& Weinstein, 2002), much less is known about how
search is accomplished through 3-D chest CT scans, or
about 3-D search strategies more generally. A limited
number of studies have examined visual search while
moving through depth outside of the medical setting
(Smith et al., 2008; Smith, Hood, & Gilchrist, 2010;
Solman, Cheyne, & Smilek, 2012; Solman, Wu,
Cheyne, & Smilek, 2013). Some studies have used eye-
tracking to examine search strategy in CT colonog-
raphy (Phillips et al., 2008) and stroke diagnosis in
head CT scans (Cooper, Gale, Darker, Toms, &
Saada, 2009; Cooper et al., 2010). These studies have
predominantly focused on difference between 2-D and
3-D search, as well as the role of expertise. Thus far,
these studies of search through volumetric images
seems to conform to the general findings in the 2-D
medical image literature (e.g., Manning, Ethell,
Donovan, & Crawford, 2006): Experts tend to be
much more efficient in their eye-movement patterns,
while novices seem to follow a haphazard pattern of
search.

Detecting lung nodules in chest CT scans is a
difficult task. The radiologist is asked to detect small
spherical nodules while ignoring features such as
blood vessels that can also appear circular in a 2-D
slice. When moving in depth, nodules will tend to
‘‘pop’’ in and out of visibility while vessels, which are
essentially tubes, persist across many slices (Seltzer et

al., 1995). Experienced radiologists tend to quickly
scroll up and down through the lung as they search
for nodules, hoping to catch the pop of a nodule
quickly flitting in and out of view. Informal
conversations with radiologists suggested that there
was a great deal of variability in how radiologists are
taught to search lungs and in the strategies that they
employ during the screening process. Here, we use
eye-tracking data to visualize search strategies and to
assess which strategy led to the better outcome as
measured by the true positive detection rate. Recent
research has shown that chest CT plays an important
role in the detection of small pulmonary nodules
(Aberle et al., 2011). In the current study, we aimed
to gain a better understanding of the strategies used
to find these nodules and to assess why errors are
made. Our ultimate goal is to use this information to
improve radiologists’ performance.

Materials and methods

In the current study, we monitored the eye position
of 25 radiologists as each searched through chest CT
cases. The goals of this study were to describe the 3-D
scan paths, to estimate the cumulative volume of the
lung that was examined, and to measure detection
performance. Eye-tracker calibration for one radiolo-
gist was poor, and this person’s data were excluded
from all subsequent analyses. The radiologists’ task was
to detect as many nodules as possible in a single chest
CT scan during a 3-min time period. Fifteen radiologist
examiners at the American Board of Radiology annual
meeting (ABR) searched through five chest CT scans.
Ten radiologists from Brigham and Women’s Hospital
(BWH) searched three cases in addition to the same five
examined by the participants at the ABR. For present
purposes, we will focus on the five cases that both
groups examined. Area of expertise and experience with
chest CT cases varied widely across our radiologist
observers. While all observers were familiar with the
lung nodule detection task, the number of chest CT
cases read per week varied from a high of 200 to a low
of 0.

Participants scrolled through the stacks of images
using the keyboard’s up and down arrow keys and were
asked to click on the center of mass of any detected
nodule using the mouse. In clinical practice, radiolo-
gists typically use the mouse wheel to navigate through
stacks of images, but this varies across viewers and
viewing systems. Prior to beginning the experiment, the
experimenter explained the navigation system and
ensured that the radiologist understood this method of
navigation. While the radiologists may have been
slightly less familiar with this method of navigation, we
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have no reason to suspect that it would dramatically
alter their overall search strategy and informal discus-
sions several of the radiologists corroborate this
assertion.

Our cases were drawn from the Lung Image
Database Consortium (LIDC: Armato et al., 2007).
To describe their cases, the LIDC method was to
identify as many nodules as possible in each lung
scan without requiring consensus between observers.
Four radiologists read over 1,000 chest CT scans,
marking all nodules they detected that were greater
than 3 mm in diameter. The LIDC listed 2,669
locations of nodules that were marked by at least one
radiologist. However, only 938 of these nodules were
marked by all four of the radiologists who read all of
these cases. Thus, there is no gold-standard truth
associated with these nodules. Even under ideal
conditions, nodule detection is a very difficult task
and the low level of agreement on these nodules is a
testament to this fact. In the five cases used here, a
total of 52 nodules were marked by at least one
LIDC radiologist. The five cases had 4, 7, 8, 10, and
23 nodules, respectively. It is possible that some of
these were not true nodules and that some nodules
were not marked. Our measures of accuracy, given
below, must be understood in that light. This
uncertainty is unavoidable if real chest CT images are
used.

In clinical practice, radiologists can make adjust-
ments to image position, scale, brightness, and con-
trast. To avoid additional factors that could affect
performance in the study, we used the same fixed preset
parameters for all subjects and CT stacks. For the
present study, window and level were set to 1500 and
!700 Hounsfield Units, respectively, values that are
commonly used for this task in the radiology clinic.
Table 1 shows number of slices per case and the slice
thickness.

Radiologists were seated in a darkened room 62
cm away from a 20 in. monitor. To minimize eye-
tracker error, the radiologists sat with their head
loosely restrained by a chin rest and were asked to
minimize movement as much as possible. The images
were displayed at 512 · 512 pixels. Due to
differences in the display equipment at ABR and
BWH, the image was projected at a slightly smaller
size at BWH (subtending 14.258 visual angle, DVA)

than at ABR (16.97 DVA). The experiment was run
using Psychtoolbox and the Eyelinktoolbox for
MATLAB (Brainard, 1997; Cornelissen, Peters, &
Palmer, 2002; Pelli, 1997).

True positives were defined as mouse clicks that
occurred within 30 pixels of the center of mass of the
nodule location as defined in the LIDC database and
within two slices to either side of the central location
of the nodule in depth. As noted, the LIDC database
is a valuable but imperfect resource for the location
and size of nodules. This makes it difficult to
evaluate the meaning of marks that do not fall on
listed nodules. It would be tempting to consider these
to be false positive errors. However, there were a
number of locations in our sample that were marked
as nodules by the majority of our radiologists even
though they were unmarked in the LIDC database.
These seem likely to be nodules. In fact, it was clear
from post-hoc consultation with radiologists that
there were a number of suspicious nodules that were
not marked by the LIDC database. As a result,
marks that fell into the false-positive category may
be made up of both false positive and some true
positives that were omitted from the database. This
makes it very difficult to compute common metrics of
overall performance such as d 0 or area under curve.
As a result, for present purposes we will focus on the
increased rate of true positives.

The nodule locations that were obtained from the
LIDC database are locations that were marked as
nodules greater than 3 mm by at least one of the four
radiologists. The database is made up of over 1,000
chest CT scans, so it is not surprising that there may be
some nodules that were missed by all four radiologists.
Given this uncertainty, our analysis will focus on true
positive and false negatives as defined relative to the
LIDC database. That is, an observer could find or miss
an LIDC nodule but we are agnostic about marks on
other locations in the case.

Eye-tracking parameters

Eye tracking was carried out using a desktop
mounted Eyelink 1000 (SR Research, Ontario,
Canada) which sampled the x and y position of the
eye at 500 Hz. We calibrated the eye tracker using a
nine-point calibration procedure for each radiologist
prior to each case. Offline, we coregistered the eye-
position information with the position in depth,
which allowed us to recreate three-dimensional eye-
movement scan paths. In the majority of the 2-D
search literature, eye-movement data are categorized
as either fixations or saccades depending on eye
position velocity and acceleration (for a review see
Rayner, 2009). These categorizations are complicated

Case number Slices Slice thickness Nodules

1 133 2.5 mm 7
2 290 2 mm 23
3 121 2.5 mm 4
4 134 2.5 mm 8
5 260 2 mm 10

Table 1. Case description.
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by the ability to navigate in depth. If eye position
remains relatively fixed in the x and y plane while the
observer scrolls in z, depth, this is neither a
conventional fixation nor a saccade. Here, we
identify fixations and saccade amplitude without
taking changes in depth into account. For our
coverage and false negative categorization data, we
focused on eye-position samples rather than the more
traditional fixation or saccade dichotomy. A taxon-
omy of eye movements through a volume would be a
good project for future research.

To support data exploration and analysis, we
developed an interactive visualization tool that
combines volumetric rendering of the anatomy
combined with 3-D rendered gaze traces, LIDC
nodule locations, and the locations marked by the
radiologists. The tool allows the user to switch
between different rendering styles (points, lines,
glyphs), animations, color mappings, cut planes, and

opacity transfer functions for the graphic processing
unit-based (GPU-based) volume-rendering. These
visualizations combine 3-D gaze plots with 3-D
medical imagery and can be viewed stereoscopically
through various means. We have primarily used our
system with a ViewSonic V3D231 display, which
enables stereoscopic viewing with passive polariza-
tion glasses through an embedded overlay pattern
with lines of alternating polarization for a resolution
of 1920 · 540 pixels. Our software is based on Cþþ
and we use the Visualization Toolkit (Visualization
Toolkit, http://vtk.org, January, 2013), as it both
provides numerous useful visualization techniques, as
well as GPU-accelerated volume rendering of the 16-
bit imagery in our DICOM (Digital Imaging and
Communications in Medicine) image stacks. Exam-
ples of these eye movement records can be down-
loaded from the Supplemental Data.

Figure 1. Examples of two observers’ eye-movement traces from the coronal (A and B) and axial (C and D) perspective. Color of the

symbols connotes time in trial, going from blue at the beginning of the trial to red at the end. Black spheres denote location of

nodules according to the LIDC database. Green triangles indicate true positives. Black triangles: false positive marks. These figures are

best viewed as movies, examples of which are available in the Supplemental Data.
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Results and discussion

3-D reconstruction of volumetric data

To investigate the search patterns of the radiologists,
we coregistered the x and y position of the eye with the
slice in the CT stack to produce scan paths in x, y, and
z. At 500 Hz, 3 min of scanning yields 90,000 samples
per trial for each individual. We plotted these data in 3-
D space. Figure 1 shows two views of the same case as
viewed by two radiologists. The LIDC nodules are
shown using black spheres, with size based on
measured nodule radius. The plotted gaze data is color
mapped based on trial time: from blue at the beginning
of the trial to red at the end. Locations where the
radiologist clicked to mark a nodule are indicated with
a cone, with its tip pointing to the mouse cursor’s
location. The cones are colored green if they coincide
with the ground truth data (true positives) or dark gray

if the location was not labeled as a nodule by the LIDC
radiologists (nominal false positives).

Scanner and drillers

Plotting the data in this manner illustrates the two
different strategies adopted by different radiologists
when searching through a volumetric image. Radiolo-
gists tended to consistently adopt one of these
strategies. Some radiologists, here designated ‘‘scan-
ners,’’ tended to search throughout a given slice in
depth before moving to a new depth. Others, here
designated ‘‘drillers,’’ held their eyes relatively still in x
and y, limiting search to, a single quadrant of the lung
while quickly scrolling—drilling—through slices in
depth. Figure 1A and B show one example of each type.
As color tracks time in these plots, scanners’ graphs
show a clear connection between color and depth in the
lung. In Figure 1A, a scanner shows blue markings at
the top of the lung and slowly progresses to red as the

Figure 2. Examples of depth by time plots for two radiologists. Color indicates what quadrant of the image the eyes are at during that
time. The radiologist on the left used drilling strategy. The radiologist on the right side used the scanning strategy.
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radiologist slowly moved toward the bottom of the
lung. In Figure 1B, a driller shows long strings of
similar colors that extend through depth as the
radiologist drills through the lung. Views of the eye-
movement data from the axial perspective are also
useful in categorizing search behavior into one of these
two groups. Drillers (as in Figure 1D) tend to show
strong organization of color from this perspective since
they tend to keep the eyes in roughly constant xy
positions for extended periods of time as they move
through depth. On the other hand, scanner eye
movements from the axial perspective have little
organizational structure: Scanning tends to lead to little
connection between xy position and time once the z
dimension is collapsed (Figure 1C). These strategies are
not absolute. For example, a scanner might scan down
through the lung and then back up rather than being
restricted to a single pass. Given the three-dimensional
quality of this data, it is best viewed as movies. These
can be downloaded from the Supplemental Data.

Depth-by-time plots

While the 3-D reconstructions are a rich way to view
the data, in an effort to derive a metric that would
distinguish drillers and scanners, we simplified the
volumetric reconstruction of the eye-movement data by
reducing the xy position to a measure of the quadrant
of the lung, currently fixated. Each 2-D slice of the lung
was divided into four equally sized quadrants, an
imperfect but adequate approximation of the anatom-
ical quadrants of the lung.

n Figure 2, these four quadrant values are coded as
different colors. This allows a 2-D representation of the
3-D scan path with time on the x axis, depth/slice on
the y axis, and eye position in the plane coarsely coded
into the four colors. Figure 2 shows these plots for each
of the five cases for each of two observers, one driller
and one scanner.

Quantifying search strategy

We have thus far discussed only qualitative measures
of search strategy, noting that (a) there appear to be
two distinct strategies for searching through the lung in
this task, and (b) the strategies appear broadly
consistent within, but not between, radiologist observ-
ers. Using these representations of the data, we
tentatively divided our population of radiologists into
two groups: 19 drillers and five scanners, based on the
appearance of the color-coded depth by time plots
(Figures 2 and 3) discussed previously. We hypothe-
sized that these two groups would differ on simple
descriptive statistics of eye-movement patterns.

During informal conversations with radiologists, one
distinct difference between the driller and scanner
strategy is the area on each depth that the radiologist
actually searches. Whereas scanners try to search the
entire lung area at the currently viewed level, drillers
typically hold fixation on subsections (often quadrants)
of the lung as they scroll through depth, making
multiple passes (or drills) through the lung one
quadrant at a time. Given this description, mean
saccadic amplitude in the 2-D plane should be longer
for scanners than for drillers, since drillers essentially
confine search to a smaller region of xy space. Another
simple metric that may be indicative of different search
strategies is the number of fixation clusters. Fixation
clusters are defined as successive fixations that fall
within a single interest area. We defined four large
interest areas that encompassed the four quadrants of
the lung. As in the depth by time plots described
previously, these interest areas are broad approxima-
tions based on using the center of lung image to divide
each image into four equal quadrants. Given these large
interest areas, any time that a radiologist had two or
more successive fixations in a single quadrant, it was
counted as one quadrant fixation cluster. Therefore
according to our operational definition of drillers and
scanners, drillers should have fewer quadrant fixation
clusters per trial because they spend long periods of time
within a single quadrant without leaving while a scanner
may quickly visit all four quadrants during this time. As
some radiologists spent less time searching than others,
we then divided the number of quadrant fixation
clusters by the amount of time spent searching. This
yields a measure of the number of quadrant fixation
clusters made per second. We used these two measures
to create a scatterplot where each point represents one
radiologist as a function of saccade amplitude and
number of fixation clusters (Figure 3A). This method of
displaying the data results in a small group of
radiologists with a high quadrant fixation cluster rate
and long saccadic amplitude grouped toward the upper
right of Figure 3A. To better appreciate this difference
we normalized both saccade amplitude and quadrant
fixation cluster rate across our population from zero to
one, then added the two measures to create a single
index. This index can be thought of as the tendency to
make large or cross-quadrant eye movements. The
index has been sorted from lowest to highest in Figure
3B. In this representation, the distinction between our
previously defined scanners and driller is quite clear.
The five radiologists that we had previously categorized
as scanners are also highest on this derived measure of
eye-movement behavior.

Descriptive statistics based on saccadic amplitude
and number of quadrant fixation clusters further
support the rough categorization made on the basis of
graphical representations of the data. Both saccadic
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amplitude, t(22)¼4.76, p , 0.001, and mean number of
quadrant fixation clusters, t(22)¼ 5.32, p , 0.001, are
larger for scanners than drillers (see Figure 3A).
Although there is a large amount of variability in both
measures within our two categories of search strategy,
combining these two measures together appears to be a
promising, simple way to categorize search strategy. In
future work, we hope to test the validity of this method
by asking observers to adopt either a scanning or
drilling search strategy, then determining whether these
measures are still an effective way to categorize these
two distinct search strategies.

Nodule detection performance

Does it matter if radiologists are adopting a driller
or scanner strategy during lung nodule detection

tasks on CT scans? If one strategy is more effective
for this task than the other, we should expect that it
would lead to a higher true positive rate. This is a
very difficult task, made more difficult given the strict
3-min time constraint employed in this experimental
version. In pilot testing, it was clear that nodule
detection rate for these stimuli was high when the
radiologists were not given a time limit, but they also
tended to search each case for a much longer time
than cases are typically searched in the clinic. For
additional discussion of this issue, see the Coverage
section of the results.

In this sample, the drilling strategy led to a
marginally significant overall increase in the number of
locations marked, drillers: 10.3 marks per case,
scanners: 7.9; t(22) ¼ 1.98, p ¼ 0.060. More important
than the total number of responses, the true positive
rate was higher for drillers than scanners, drillers: 60%

Figure 3. Defining drillers and scanners. (A) Scatterplot of quadrant fixation clusters/s by saccadic amplitude. The measures were
normalized and then aggregated. (B) Resultant metric is then plotted with rank order on the x axis. (C) Four examples of individual
trials from different radiologists are plotted. Numbers indicate the point associated with depth by time plot below. (D) Zoomed
portion of a scanner’s depth by time plot. Each quadrant is visited on each level prior to moving to a new depth.

Journal of Vision (2013) 13(10):3, 1–13 Drew et al. 7



of all available nodules versus scanners: 48%; t(22) ¼
3.9, p , 0.001. The number of false alarms per case did
not differ significantly, drillers 4.3; scanners: 3; t(22) ¼
1.42, p ¼ 0.17.

There are a number of reasons why drillers might
have found more lung nodules. It is possible that
drilling is simply a better strategy for searching through
volumetric images. This strategy seems to do a better
job of taking advantage of the ability to scroll quickly
through the image. However, if this is a real advantage
it is almost certainly dependent upon the task at hand.
Scrolling through depth is thought to allow radiologists
to discriminate more effectively between lung nodules
and lung vessels given the different 3-D shapes of these
objects (Seltzer et al., 1995). The ability to see nodules
pop in and out of existence is one of the reasons that
radiologist began to examine chest CT scans using
stack viewing mode.

Several covarying factors make it unwise to argue
too strongly that the driller method is inherently
superior. For example, our drillers tended have more
experience searching through chest CTs (see Figure
4). The average number of chest CT scans read per
week by scanners was lower (3.8) than drillers, 43.6;
t(22) ¼ 2.75, p , 0.05. In fact, while 40% of our
scanners reported reading zero chest CT cases per
week, only 21% of drillers responded in this manner.
Obviously, this complicates the interpretation of the
finding that drillers appear to be better at nodule
detection than scanners. It is possible that the
difference between experienced and less experienced

readers would be just as great if all of them were
scanners or all were drillers. Another possibility is
that radiologists with more experience with chest CT
eventually learn that drilling is a superior strategy
and adopt this strategy as a result. Although the
scanners did not read as many chest CT cases per
week as the drillers, the area of expertise of these
radiologists suggests that the observed performance
decrement associated with this group was not driven
by a lack of experience with chest CT images: Of the
five scanners, two specialized in thoracic imaging,
with the others specializing in emergency room
radiology, mammography, and neuroradiology. In a
post-hoc exploratory analysis, we compared nodule
detection rate from the five drillers who reported
reading zero cases per week (56% correct) and the
scanners (48%). With only five radiologists in each
group, the comparison is underpowered and the
difference did not reach statistical significance, t(8) ¼
1.71, p ¼ 0.13, but appears to follow the overall
pattern that drilling leads to higher detection rates
even when controlling for experience. Clearly, future
research will be necessary to determine if drilling is
truly a better strategy for this task. If it is, we may be
able to improve the performance of scanners by
encouraging them to using the drilling strategy.

There were nonsignificant age and experience trends.
Scanners were older, 54.2 compared to 46.4: t(22)¼ 1.4,
p¼ n.s., and had more years in practice, 19.8 compared
to 15.0: t(22) ¼ 0.9, p¼ n.s., than the drillers. These
factors might warrant future investigation as well.

Figure 4. Behavioral performance and experience as a function of search strategy. Error bars here and throughout the paper represent
standard error of the mean. Asterisks denote statistically significant differences ( p , 0.05).
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Coverage

What percentage of the lung tissue do radiologists
actually search while performing a lung nodule
detection task? The answer to this question depends
greatly on how one estimates the ‘‘useful field of view’’
(UFOV). We recorded the x, y, and z position of the
gaze 500 times per second. Each coordinate in this large
matrix represents a single point in space. In order to
determine coverage, we need to estimate the size of the
region of space around this single point that we can
think of as attended. This undoubtedly depends on the
task at hand. For instance, the UFOV for simple

stimuli (i.e., detecting a red bar amongst green bars)
will be much larger than the UFOV for complex stimuli
(i.e., detecting nodules; Young & Hulleman, 2013).
Kundel et al. (1987) found that low contrast targets
were detected roughly 80% of the time as long as the
target was within a 58 diameter of the eye position. This
58 diameter estimate has been used in a number of
follow-up studies involving chest radiographs (e.g.,
Kundel et al., 1989; Nodine, Mello-Thoms, Kundel, &
Weinstein, 2002).

Given that these estimates were initially made to
approximate nodule detection in chest radiograph, we
used a 58 circle to estimate the total coverage of the
lung. Computing total lung coverage was a three-step
procedure. First, we used a simple image processing
algorithm to extract the lung tissue from our chest CT
scans and converted the images to a black (not lung
tissue) and white mask (lung tissue). Second, we used
our matrix of all x, y, and z eye positions over the
course of the trial to place 58 black circles centered at
each of these points. This amounts to ‘‘painting’’ the
lung with a circular brush in all places where the eyes
have visited. Theoretically then, a lung with 100%
coverage would be completely black at this point. The
final step of the procedure was to divide the number of
white pixels in the newly created coverage lung image
to the number of white pixels in the original lung
image. To further understand how the process of

Figure 6. Search error categorization as a function of search

strategy.

Figure 5. Coverage metrics. (A) Coverage for the two search strategies over time. Duration was divided into 10 equally sized epochs
on each trial. (B) Total lung coverage for the two groups. (C) Lung coverage for trials where search continued for the full trial duration
(3 min) or left early. (D) Correlation between total lung coverage and time spent searching for those trials where radiologists elected
to finish early.
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searching the lung differed between the scanner and
drillers, we analyzed lung coverage by group as a
function of time. We divided each trial into ten equally
sized epochs, then plotted cumulative coverage as
function of time (Figure 5A). At each epoch, drillers
covered more of the lung than scanners. The final total
coverage differed as function of search strategy:
drillers, 72%, covered more of the lung than scanners,
55%: t(23) ¼ 2.23, p ¼ 0.029. Overall we found that
when using a 58 estimate of the useful field of view, an
average of 69% (range: 44%–92%) of the lung tissue
was covered by our radiologists.

Since we imposed a 3-min time limit on each trial, we
cannot claim that radiologists would only search
through two thirds of the lung in normal practice.
However, while there is no time limit in the reading
room, radiologists are generally under time pressure
imposed by case load. The 3-min limit was imposed in
an effort to simulate a typical clinical search time based
on conversations with and observation of radiologists
engaged in chest CT reading. In our study, 42% of the
trials (49/118) were voluntarily terminated prior to our
time limit. If we compare lung coverage for the ‘‘early
exit’’ trials and those trials where the radiologists
searched until the time limit (‘‘exhaustive search’’), we
see that early exit trials produce reliably higher
coverage than the exhaustive search trials, in the final
epoch, 75% versus 65%: t(116)¼ 3.14, p , 0.001. This
may suggest that, without a time limit, radiologists who
used the full time in the current experiment would have
produced somewhat greater coverage, but not much.
Experienced readers of chest CT may be somewhat
faster readers of chest CTs (unsurprisingly). Radiolo-
gists who reported that they read chest CT scans
regularly ended search in less than 3 min on a higher
proportion than the radiologists who were not regular
chest CT readers, 49% versus 26%: v2 (1, N¼ 118) ¼
6.37, p , 0.05. In the early exit trials, there was no
correlation between time spent searching and coverage
(r2 , 0.01: Figure 5D).

These data represent one of the first quantitative
estimates of coverage of a volumetric medical image.
Previously, Ellis et al. asked four radiologists to search
through 16 slice subsections of the chest CT scans
(2006). They found that less than 50% of the lung was
scrutinized by foveal vision when using a 2 DVA
estimate of FOV. Using much more liberal estimate of
FOV, our data similarly suggests that a substantial
proportion of the lung is not closely scrutinized. This
suggests that we are either underestimating the ability
of radiologist to extract information from peripheral
vision or that radiologists do not completely search the
lung during lung cancer screening. If the lung is not
completely searched during this task, it is likely that
this is a cause of some false negative errors. Alterna-
tively, this level of coverage may reflect the expertise of

the radiologists. If certain areas within the lung hardly
ever contain lung nodules, it would be logical to avoid
spending additional time in these low-yield areas,
especially when considering the constant time-pressure
in the radiology reading room.

Despite all the benefits of the evolution from chest
radiographs to chest CT scans, maintaining a repre-
sentation of what areas have been searched is much
more difficult in volumetric space than in the simple 2-
D images of chest radiographs. Given the evidence that
holding information in working memory decreases the
efficiency of visual search in the laboratory (Oh & Kim,
2004; Woodman & Luck, 2004), we believe that these
additional mnemonic costs with associated volumetric
images are an important factor that should be
considered when evaluating how to improve search
performance in these complex displays. Furthermore,
as noted by Solman et al. (2012), the observer is much
more likely to get disoriented and waste valuable time
in search tasks that ask the searcher to navigate
through volumetric space. From this perspective, the
low level of coverage in the current dataset suggests
that providing the radiologist with some representation
of what areas of the lung have not yet been searched
could improve lung nodule detection.

Characterizing false negative errors

In order to better understand the cause of the
observed false negative errors, we used the eye-tracking
data to categorize each false negative in terms of how
long the lesion in question was fixated. This method
was pioneered by Kundel et al. (1978), who used it to
analyze the different types of errors that occurred
during search for lung nodules in 2-D chest radio-
graphs. It has since been extended to a variety of
medical images, including bone fractures (Hu, Kundel,
Nodine, Krupinski, & Toto, 1994), and mammograms
(Krupinski, 1996; Krupinski & Nishikawa, 1997).
Kundel et al. proposed a three-way categorization of
errors based on the fixation data. If a target never fell
within the UFOV of the eyes, the resulting error was
categorized as a search error. If a target attracted foveal
vision for a long period of time (. 1 s), then,
presumably, it was identified as a possible lesion worthy
of scrutiny but was deemed innocuous or irrelevant.
This is a decision error. Finally, targets that fell within
the UFOV for less than a second were labeled as
recognition errors. We used these definitions to
categorize the errors made in our nodule detection task.
As pointed out by Kundel et al. (1978), the distribution
of these types of errors is entirely contingent upon the
definition of useful field of vision. They adopted a
circular region around the fixation point that sub-
tended 5 DVA. This estimate of UFOV has been used
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in many of the papers that have followed Kundel’s
classic study (e.g., Krupinski, 1996; Krupinski &
Nishikawa, 1997; Mello-Thoms et al., 2005; Nodine et
al., 2002) and we adopted this estimate as well.

To assess the role that search strategy had on search
error type, we analyzed the amount of time spent
within 2.5 DVA of all false-negative nodules (a 5 DVA
diameter UFOV). Scanner and drillers showed a
significantly different distribution of error types, v2 (2,
N¼ 529)¼ 20.77, p , 0.001. This result is driven by a
higher proportion of search errors (45% vs. 32%) in the
scanner population and a higher rate of recognition
errors in the driller population (23% vs. 39%).
Furthermore, in the original Kundel et al. (1978) study,
the distribution of errors was 30% search, 25%
recognition, and 45% decision errors. We find a
significantly different pattern in our data, v2 (2, N¼ 2)
¼ 56.22, p , 0.001. Decision errors are less common in
our data, perhaps reflecting an improvement, brought
about by the advent of CT imaging, in the ability to
identify nodules once they are located. However, given
the many differences between these studies, more work
needs to be done to directly compare the distribution of
errors in chest radiograph and chest CT cases.

Conclusions

Advances in computer technology have revolution-
ized diagnostic radiology, dramatically increasing the
scope and variety of medical images. While we know a
great deal about how search is accomplished in 2-D
images, such as chest radiographs, we know much less
about search in the sorts of volumetric images that are
becoming standard in radiology reading rooms all over
the world. Although adding a depth dimension to
search undoubtedly enables searchers to detect smaller
abnormalities, converting to this type of image also
fundamentally changes the process by which the
observer searches for targets. It is therefore important
to use methods, such as the ones derived in this paper,
to better understand how search is accomplished in
these complex images. This is one of the first studies to
analyze how radiologists search through a volume of
images. By tracking the eye movements of these expert
observers, we were able to uncover a series of novel
results:

1. In a lung nodule detection task on chest CT scans,
radiologists tended to adopt one of two search
strategies, here termed drilling and scanning. These
strategies were consistent within individuals across
the multiple trials.

2. Drillers covered more of the lung than scanners.
3. Drillers correctly localized more lung nodules than

scanners.

4. Driller and scanners differ in their distribution of
error types. Most nodules, missed by scanners, were
never looked at (search errors), whereas a plurality
of nodules, missed by drillers were looked at briefly
but not classified as possible nodules (recognition
errors).

As eye tracking becomes easier and less intrusive, it
will be valuable to acquire eye-movement data in true
clinical settings. This information would allow a more
definitive assessment of our hypothesis that the drilling
strategy works better than the scanning strategy. Data
of this sort could also be used to inform the training of
the next generation of radiologists.

Keywords: visual search, eye movements, medical
image perception
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